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This paper is dedicated to the memory of Dan Butnariu, my dear friend and teacher.

Abstract. A generalization of the Möbius transform of games with finitely
many players is introduced for games on MV-algebras. The variety of MV-
algebras subsumes most coalition models. We characterize the class of games
for which the generalized Möbius transform exists. An application of the
proposed transform to a Cimmino-type algorithm is shown for the core solution
in games with finitely-many players.

1. Introduction

The Möbius transform, which originated in the work of Rota [Rot64], was
introduced to deal with problems in combinatorics and number theory. The scope
of its applications is, however, very broad, so one of the areas in which it is used
extensively is coalition game theory or theory of non-additive set functions in gen-
eral. Since coalition games in the classical setting of games with finitely many
players [PS07] are just set functions on the algebra of all subsets, we will pre-
fer the shorter term “game” instead of “set function”. The Möbius transform of
a game is an equivalent representation of the game such that this representation
can be viewed as an additive set function defined on a much larger algebra than
the original game. This point of view is not so illuminating when processing games
with finitely many players, yet its underlying idea enables extensions of the Möbius
transform to games on infinite sets [Sch86, Den97]. There are numerous fields
and results intertwining with the theory of the Möbius transform: the theory of
integral representations of Choquet [Cho54], Stone’s representation theorem for
Boolean algebras or random set theory [Mol05]. A comprehensive account of these
aspects can be found in [Mol05, Chapter 1].

The main goal of this paper is to show that the Möbius transform can be nat-
urally generalized to games on MV-algebras [CDM00]. Most algebraic structures
used for modeling coalitions in coalition game theory, such as Boolean algebras of
sets [PS07, AS74] or particular families of real-valued functions [Aub74, BK93],
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are special cases of MV-algebras (“many-valued”-algebras). It was Dan Butnariu
who envisioned the study of games on MV-algebras already in the book [BK93],
and who further encouraged the author to pursue the study of games in the many-
valued settings.

While Boolean algebras give semantics to the classical two-valued logic, MV-
algebras are the algebras of �Lukasiewicz infinite-valued logic [CDM00, Chapter 4].
It was argued in [Kro09] that the idea of many-valued coalitions fits within the
framework of coalition game theory. We will give the necessary background on MV-
algebras in Section 2.1. The essential tool in investigating the generalized Möbius
transform and the solution of games is the concept of measure (or state) introduced
in [Mun95]. As a matter of fact, the notion of measure on an MV-algebra is just
an “integral” extension of the notion of Borel measure — see Theorem 2.10 in
Section 2.2.

Section 3 contains the main result (Theorem 3.5), which singles out the class
of MV-algebras and games for which the generalized Möbius transform exists. This
result is preceded by the motivation leading to the introduction of the MV-algebra
of all continuous functions over the space of compact subsets on which the Möbius
transform should be defined: this construction is in line with the idea of the Möbius
transform in the Boolean setting. Results similar to those in Section 3 appear in
[Sch86] and [Den97] but it is rather difficult to compare them directly since there
are essential differences in their basic settings. Indeed, the most important point
of dissimilarity is that we always work with a particular set of continuous functions
over a compact Hausdorff space. The tools and techniques of random set theory and
Choquet integration [Mol05] lie at the heart of the proof of Theorem 3.5. In partic-
ular, the fundamental Choquet-Matheron-Kendall theorem [Mol05, Theorem 1.13]
is used to establish the assertion of Theorem 3.5(ii).

In Section 4 we will show that the information provided by the generalized
Möbius transform can be used for recovering elements of cores of games on MV-
algebras by a Cimmino-type algorithm. The core of a game (Definition 4.1) is one of
the basic solution concepts in coalition game theory. In [BK09], Butnariu and the
author designed an iterative procedure to recover the core elements. This procedure
is based on the Cimmino-type projection algorithm introduced by Butnariu and
Shklyar in [BS08]. The so-called coalitional assessment of a given game (Definition
4.2), which is a crucial input parameter of the procedure, can be easily derived from
the generalized Möbius transform of a particular class of games (Theorem 4.4).

2. Preliminaries

Basic definitions and results concerning MV-algebras are recalled in Section 2.1.
Measures on MV-algebras will be briefly introduced in Section 2.2. The interested
reader is referred to the book [CDM00] and Chapter 22 in [BW02] for further
details.

2.1. MV-algebras.

Definition 2.1. An MV-algebra is an algebra

〈M,⊕,¬, 0〉
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with a binary operation ⊕, a unary operation ¬ and a constant 0 such that 〈M,⊕, 0〉
is an abelian monoid and the following equations hold true for every a, b ∈ M :

¬¬a = a,

a⊕ ¬0 = ¬0,
¬ (¬a⊕ b)⊕ b = ¬ (¬b⊕ a)⊕ a.

On every MV-algebra M, we define

1 = ¬0,
a� b = ¬ (¬a⊕ ¬b) .

For any two elements a, b ∈ M , we write a ≤ b if ¬a⊕ b = 1. The relation ≤ is in
fact a partial order. Further, the operations ∨,∧ defined by

a ∨ b = ¬ (¬a⊕ b)⊕ b,

a ∧ b = ¬ (¬a ∨ ¬b) ,
respectively, make the algebraic structure 〈M,∧,∨, 0, 1〉 into a distributive lattice
with bottom element 0 and top element 1.

Example 2.2 (Algebra of sets). Every Boolean algebra A of subsets of a set X

is an MV-algebra in which ⊕ = ∨ = ∪,� = ∧ = ∩, ¬ is the set complement �, and
0 = ∅, 1 = X.

Example 2.3 (Standard MV-algebra). The basic example of an MV-algebra
is the standard MV-algebra, which is the real unit interval [0, 1] equipped with
operations

a⊕ b = min(1, a+ b) and ¬a = 1− a.

This implies

a� b = max (0, a+ b− 1)

by the definition of the operation �. The partial order ≤ of the standard MV-algebra
coincides with the usual order of reals from the unit interval [0, 1]. The operations
�,⊕ are also called the �Lukasiewicz t-norm and the �Lukasiewicz t-conorm [BK93],
respectively.

The set [0, 1]X of all functions X → [0, 1] becomes an MV-algebra if the op-
erations ⊕,¬ and the element 0 are defined pointwise. The corresponding lattice
operations ∨,∧ are then the pointwise maximum and the pointwise minimum of
two functions X → [0, 1], respectively.

Definition 2.4. Let X be a nonempty set. A clan over X is a collection MX

of functions X → [0, 1] such that the zero function 0 is in MX and the following
conditions are satisfied:

(i) if a ∈ MX , then ¬a ∈ MX ,
(ii) if a, b ∈ MX , then a⊕ b ∈ MX .

In particular, a clan MX contains the constant function 1 and it is closed with
respect to the operation � and thus every clan is an MV-algebra. Interestingly,
most mathematical structures for modeling coalitions of players are captured by
clans. Suppose that X is a set of players. If X is finite, then the algebra A = 2X

of all subsets of X is the classical framework used in coalition game theory — see,
for instance, [PS07]. This setting can be further generalized in a few directions.
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The coalition structures in the form of the MV-algebra [0, 1]X with X finite were
investigated by Aubin [Aub74] under the name “games with fuzzy coalitions”. Re-
laxing the finiteness assumption, Aumann and Shapley [AS74] investigated games
on the Borel measurable subsets of the player set X = [0, 1]. They also came up
with the idea of many-valued coalitions under the name of “ideal coalitions”, which
they identified with Borel measurable functions X → [0, 1]. Butnariu and Klement
[BK93] focused on games defined on so-called tribes. A tribe over X is a clan MX

closed with respect to countable (pointwise) suprema of its elements:

if (an) ∈ MN

X , then

∞∨
n=1

an ∈ MX .

In this contribution, we will focus on the class of so-called semisimple MV-algebras,
which subsumes all the algebraic structures mentioned above for modeling coali-
tions.

Let M be an MV-algebra. A filter in M is a subset F of M such that

(i) 1 ∈ F ,
(ii) if a, b ∈ F , then a� b ∈ F ,
(iii) if a ∈ F and a ≤ b ∈ M , then b ∈ F .

A filter F inM is proper if F �= M . We say that a proper filter ismaximal whenever
it is not strictly included in any proper filter. LetXM be the set of all maximal filters
in M . It can be shown that XM �= ∅. The set XM can be endowed with a topology
whose family of closed sets is given by all sets CF = {F ′ ∈ XM | F ′ ⊇ F}, where
F is a filter in M . Then the space XM becomes compact and Hausdorff.

An MV-algebra M is called semisimple (cf. [CDM00, Chapter 3.6]) if⋂
{ F | F ∈ XM } = {1}.

A clan MX of functions X → [0, 1] is separating whenever for every x, y ∈ X with
x �= y, there exists a function a ∈ MX such that a(x) �= a(y). Every semisimple
MV-algebra has a convenient representation by a separating clan of continuous
functions over some compact Hausdorff space: this is the assertion of Theorem 2.5
below. See [CDM00, Chapter 3] for details and the proof.

If M1,M2 are MV-algebras, then a mapping h : M1 → M2 is an isomorphism
provided h is a bijection that preserves the operations ⊕,¬ and the constant 0.

Theorem 2.5. The following assertions are equivalent for any MV-algebra M :

(i) M is semisimple,
(ii) M is isomorphic to a separating clan of continuous [0, 1]-valued functions

over the compact Hausdorff space XM ,
(iii) M is isomorphic to a separating clan of continuous [0, 1]-valued functions

over a compact Hausdorff space X,
(iv) M is isomorphic to a clan of [0, 1]-valued functions over a set X.

Without loss of generality, every semisimple MV-algebra can be thought of as
a separating clanMX of continuous functions over a compact Hausdorff spaceX and
vice versa. Thus semisimple MV-algebras can be viewed as common generalizations
of coalition structures provided that the set of players is identified with the compact
Hausdorff space X. Equipping the set of players X with a topology is not unusual
in game theory. For instance, Aumman and Shapley [AS74] assume that X is
a Polish space or the real unit interval [0, 1]. If a ∈ MX is a coalition and x ∈ X



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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is a player, then the continuity of a means that the degrees of membership a(y) of
the players y ∈ X do not change abruptly when y is sufficiently close to x.

Let MX be a separating clan of continuous functions over a compact Hausdorff
space X. There exists a one-to-one correspondence between certain filters in MX

and closed subsets of X. For every set A ⊆ X, the subset of MX given by

(2.1) FA = { a ∈ MX | a(x) = 1 }
is a filter in MX . In particular, F∅ = MX , FX = {1}, and the filter F{x} is maximal
for every x ∈ X. Conversely, a closed subset VF of X can be assigned to every filter
F in MX by putting

VF =
⋂{

a−1(1)
∣∣ a ∈ F

}
,

since every function a ∈ F is continuous.

Theorem 2.6. Let MX be a separating clan of continuous functions over a com-
pact Hausdorff space X.

(i) The mapping x ∈ X �→ F{x} is a one-to-one correspondence between X
and the set of all maximal filters in MX .

(ii) If A ⊆ X is closed, then A = VFA
.

(iii) If F is a proper filter that is an intersection of all maximal filters contain-
ing F , then F = FVF

.

See [CDM00, Chapter 3.4] for the proof and examples of filters that are not
intersections of maximal filters. Theorem 2.6(iii) establishes a one-to-one order-
reversing correspondence between the set of all nonempty closed subsets of X and
the set of all proper filters in MX that are intersections of maximal filters. This
fact is crucial for developing a faithful generalization of the Möbius transform in
Section 3.2.

2.2. Measures on MV-algebras. Throughout this section we assume that
MX is a separating clan of continuous functions over a compact Hausdorff space X.
We think of the clan MX as the set of all possible coalitions arising in a game with
the player set X. Plausible solutions to the game are conceived as real functionals
on MX that are additive with respect to the operation ⊕. Particular classes of such
functionals on MV-algebras are known as measures [BW02] and states [RM02].
Our terminology is similar to that used in [BW02].

Definition 2.7. A measure on MX is a function m : MX → R such that
m(0) = 0 and

(2.2) m(a⊕ b) = m(a) +m(b)

for every a, b ∈ MX with a� b = 0. We say that a measure m is bounded if

sup { |m(a)| | a ∈ M } < ∞
and m is nonnegative when m(a) ≥ 0 for every a ∈ MX .

In particular, every nonnegative measure m is bounded since there is a non-
negative real α and a nonnegative measure s with s(1) = 1 such that m = αs. The
condition (2.2) is a kind of additivity since

(2.3) a� b = 0 if and only if a+ b ≤ 1,

where + is the pointwise sum of real functions. Every distribution of profit in
a coalition game with the coalition set MX is viewed as a bounded measure on MX
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and vice versa. This is natural since the profit m(a ⊕ b) is split into the sum of
terms m(a) and m(b) corresponding to the incompatible coalitions a, b ∈ MX in
the sense of (2.3).

Although a bounded measure on MX quantifies rather a potential profit of
coalitions than that of players, Theorems 2.8 and 2.10 below guarantee that every
distribution of profit among all the coalitions induces a unique distribution of wealth
among all the players. Moreover, the profit distributed in this way to each coalition
a ∈ MX is precisely the “mean value” of the profits assigned to the individual
players with weights given by the membership degrees of all the players participating
in a. Let B(X) be the σ-algebra of all Borel subsets of X. The term “measure
on B(X)” stands for “σ-additive real-valued function on B(X)”. We will need
the following integral representation theorem arising from [Kro06, Theorem 28] or
[Pan08, Proposition 1.1].

Theorem 2.8. The set of all nonnegative measures on MX is in a one-to-one
correspondence with the set of all nonnegative regular Borel measures on B(X) via
the mapping μ �→ mμ, where μ is a nonnegative regular Borel measure and

mμ(a) =

∫
X

a dμ, a ∈ MX .

Bounded measures onMX possess the following Jordan decomposition property
— see [BW02, Theorem 3.1.3].

Theorem 2.9. Let m be a bounded measure on MX . For every a ∈ MX , put

m+(a) = sup {m(b) | b ≤ a, b ∈ MX } ,
m−(a) = m+(a)−m(a).

Then m+,m− are nonnegative measures on MX such that

m = m+ −m−.

Let μ be a regular Borel measure. Then the classical Jordan decomposition of
the Borel measure μ makes it possible to write μ = μ1 − μ2 for two nonnegative
regular Borel measures μ1, μ2. The integral∫

X

a dμ =

∫
X

a dμ1 −
∫
X

a dμ2, a ∈ MX

is denoted by mμ(a).

Theorem 2.10. The set of all bounded measures on MX is in a one-to-one
correspondence with the set of all regular Borel measures on B(X).

Proof. If μ is a regular Borel measure on B(X), then mμ is a measure on
MX . It is also bounded, since mμ can be extended to a bounded linear functional
on the Banach space of all continuous functions over X with the supremum norm.
Conversely, let m be a bounded measure on MX . Then Theorem 2.9 gives a pair
of nonnegative measures m+,m− with m = m+ −m− and Theorem 2.8 says that
m+ = mμ1 ,m− = mμ2 for the unique nonnegative regular Borel measures μ1, μ2.
Setting μ = μ1 − μ2 shows that m = mμ. So we need only to check that μ is the
unique measure with this property. Let ν be a regular Borel measure with mν = m
and ν1, ν2 be nonnegative regular Borel measures such that ν = ν1 − ν2. Then
the equality mν1−ν2 = mμ1−μ2 can be expressed as mν1+μ2 = mμ1+ν2 . Since both
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ν1+μ2 and μ1+ν2 are nonnegative, it follows by Theorem 2.8 that ν1+μ2 = μ1+ν2.
Hence ν = ν1 − ν2 = μ1 − μ2 = μ. �

3. Games on MV-algebras

The set of all plausible coalitions is represented by a separating clan MX of
continuous functions over X. It was emphasized in Section 2.1 that this assumption
captures most structures used for modeling coalitions of players. Each coalition
a ∈ MX in a game is assigned a real number, the worth of a. This assignment then
determines the coalition game.

Definition 3.1. A game on MX is a function

v : MX → R

satisfying v(0) = 0 and sup { |v(a)| | a ∈ MX } < ∞.

The number v(a) is the total worth generated by the players in the coalition
a ∈ MX as a result of their cooperation. The main objective in coalition game
theory is to find a final distribution of the profit among the players, which depends
only on the results of cooperation a priori captured by the function v. In Section 2.2,
we identified each such profit distribution with a bounded measure on MX .

Hence we can formalize the task of “solving” a coalition game as follows. Let
Γ be a class of games on MX . A solution on Γ is a mapping σ sending every
v ∈ Γ to a set σ(v) of bounded measures on MX . Various assumptions of economic
and behavioral rationality lead to different solutions σ. The core is one of the
most important solution concepts in coalition game theory [PS07, Section 3]. This
solution will be further discussed in Section 4 (Definition 4.1), in which we apply the
generalized Möbius transform, developed in the next section, to a class of games
on the clan over a finite player set. The underlying idea is that an alternative
representation of the game v is convenient for understanding the structure of the
solution set σ(v) or for enhancing the computations with the solution set. Namely,
Möbius transform is frequently used for the representation of games on the set of
all subsets of a finite set [PS07, Section 8.1]. In the next section, we are going
to generalize the Möbius transform to semisimple MV-algebras. The center of
our interest is to find an appropriate algebra on which such generalized Möbius
transform “lives”.

3.1. Möbius Transform. In his fundamental paper [Rot64], Rota intro-
duced the Möbius inversion formula for any locally finite partially ordered set.
His approach unified the classical inclusion-exclusion principle, the number theo-
retic Möbius inversion, and some graph problems. For the purposes of this paper,
we will confine our discussion to the algebra 2X of all subsets of a finite set X.
The chapter [PS07, Section 8] or the paper [DK00] show the important role which
Möbius transform plays in cooperative game theory.

Let v be a game on the clan 2X , where X = {1, . . . , n}. The Möbius transform
of v is the only solution

m : 2X → R

of the equation

(3.1) v(A) =
∑
B⊆A

m(B), for each A ∈ 2X .
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We will denote the Möbius transform of v by mv. The function mv can be directly
recovered from v as

mv(A) =
∑
B⊆A

(−1)|A\B|v(B), for each A ∈ 2X .

Vice versa, let m : 2X → R be such that m(∅) = 0. Put

vm(A) =
∑
B⊆A

m(B), for each A ∈ 2X .

Then it follows that
mvm = m.

Observe that the Möbius transform mv of any game v determines a unique

(finitely-additive) measure μv on 22
X

by setting

μv(A) =
∑
A∈A

mv(A), for each A ∈ 22
X

.

On the other hand, every measure μ : 22
X → R such that μ({∅}) = 0 gives rise

to a unique mapping m : 2X → R with m(∅) = 0 by putting m(A) = μ({A}), for
each A ∈ 2X . Hence the set of all possible Möbius transforms can be identified with

the set of all measures on 22
X

supported by a subset of 2X \ {∅}. Note that the set
2X \ {∅} is in a one-to-one correspondence with the proper filters in the algebra 2X

via the mapping
B ∈ 2X \ {∅} �→

{
A ∈ 2X

∣∣ B ⊆ A
}
.

The set

(3.2)
{
B ∈ 2X \ {∅}

∣∣ B ⊆ A
}

used in the summation (3.1) can be interpreted as the set of those proper filters in
2X to which A ∈ 2X belongs. In the next section, we will first establish a genuine
MV-algebraic generalization of (3.2).

3.2. Generalized Möbius Transform. Let MX be a separating clan of con-
tinuous functions over a compact Hausdorff space X. By K we denote the set of
all compact subsets of X. For every a ∈ MX and every A ∈ K, define

(3.3) ρa(A) =

{
inf { a(x) | x ∈ A } , A �= ∅,
1, A = ∅.

In particular, if MX = 2X with X finite, then

ρA(B) =

{
1, B ⊆ A,

0, otherwise,
for each A,B ∈ 2X .

So (3.2) is just a special case of (3.3) since{
B ∈ 2X

∣∣ B ⊆ A
}
=

{
B ∈ 2X

∣∣ ρA(B) = 1
}
.

It is useful to think of ρa as a continuation of function a ∈ MX from X to
set K. Such an interpretation is imaginable since ρa({x}) = a(x) for every x ∈ X.
Moreover, the function ρa will become a continuous extension of a once we introduce
a suitable topology onK. In general, a rich variety of topologies onK can be induced
from the topology of the underlying spaceX. However, the additional assumption of
second-countability of the space X is later required for the existence of a generalized
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Möbius transform (Theorems 3.5 and 3.6). Under this assumption, the Urysohn
metrization theorem [Kel55, p. 125, Theorem 16] implies the following.

Theorem 3.2. Let X be a compact Hausdorff space. If X is second-countable,
then X is metrizable.

Consequently, the most natural choice is to endow the set K of all compact
subsets of a compact Hausdorff second-countable space X with the topology given
by Hausdorff distance [CV77, Chapter II.1]. Specifically, let d be any metric
compatible with the topology of X. Define

d(x,A) = inf { d(x, y) | y ∈ A } , x ∈ X,A ∈ K,

and

e(A,B) = sup { d(x,B) | x ∈ A } , A,B ∈ K.

The Hausdorff distance Hd on K is given by

Hd(A,B) = max { e(A,B), e(B,A) } , A,B ∈ K.

The function Hd makes K′ = K \ {∅} into a metric space but it is only an extended
metric on K as Hd(A, ∅) = ∞ for every A ∈ K′. The topology τd generated by
Hd on K will be called the Hausdorff metric topology. It follows from [CV77,
Corollary II-7] that τd = τd′ whenever d and d′ are equivalent metrics inducing
the topology on X. Thus we may simply refer to “the Hausdorff metric topology”
without explicitly mentioning the underlying metric on X. We will make ample
use of the following properties of the Hausdorff metric topology — see [Mol05,
Appendix B-C].

Proposition 3.1. If X is a compact Hausdorff second-countable space, then
the Hausdorff metric topology on K has the following properties:

(i) Both spaces K and K′ are compact Hausdorff, and the point ∅ is isolated
in K.

(ii) The subspace { {x} | x ∈ X } of K is homeomorphic to X.
(iii) For each open G ⊆ X, the sets {A ∈ K | A ⊆ G } and {A ∈ K|A∩G �= ∅}

are open.
(iv) The Borel σ-algebra B(K) on K is generated by the sets {A ∈ K|A∩G �=

∅} for all open G ⊆ X.

In the sections that follow, we denote by CK the clan of all continuous (in
the Hausdorff metric topology) functions K → [0, 1]. The clan CK′ is defined
analogously. It turns out that the mapping ρ : a ∈ MX �→ ρa ∈ [0, 1]K is into CK.

Proposition 3.2. Let MX be a separating clan of continuous functions over
a compact Hausdorff second-countable space. For every a, b ∈ MX :

(i) ρa∧b = ρa ∧ ρb,
(ii) ρa ∈ CK.

Proof. The first equality is obvious. The restriction of ρa to K′ is continuous
due to [Bee93, Exercise 13, p. 145]. Since the point ∅ is isolated in K, function ρa
is continuous on the whole set K. �

In particular, ρ indeed extends a continuous function a ∈ MX to the continuous
function ρa ∈ CK. For every A ∈ K, the number ρa(A) ∈ [0, 1] can be viewed as
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a “degree” to which a ∈ MX belongs to the filter FA generated by the compact set
A (see (2.1) together with Theorem 2.6). Specifically, this means that

ρa(A) = 1 if and only if a ∈ FA.

The restriction of ρa to CK′ is denoted also by ρa.
We obtain a natural generalization of Möbius transform once we replace a mea-

sure μ on 22
X\{∅} from Section 2.2 by a bounded measure m on CK′ . Hence we

focus on the class of games v on MX for which

(3.4) v(a) = m(ρa), for every a ∈ MX .

Only the games v satisfying (3.4) will have the generalized Möbius transform. If

X is finite and MX = 2X , then CK′ = 22
X\{∅}, so the equality (3.1) is recovered

as a special case. In order to characterize the class of games v given by (3.4), we
need the basic concepts of the theory of capacities and Choquet integral theory —
see [Mol05, Chapter 1] for details.

A capacity on K is a function β : K → R such that

(i) β(∅) = 0,

(ii) if (An) ∈ KN is non-increasing, then β
( ∞⋂

n=1
An

)
= lim

n→∞
β(An),

(iii) sup { |β(A)| | A ∈ K } < ∞.

A capacity β on K is called totally monotone when β is monotone and the following
inequality holds true for each n ≥ 2 and every A1, . . . , An ∈ K:

β

( n⋃
i=1

Ai

)
≥

∑
I⊆{1,...n}

I 	=∅

(−1)|I|+1β

(⋂
i∈I

Ai

)
.

Example 3.3. If A ∈ K′, then the function δA : K → {0, 1} defined as

(3.5) δA(B) =

{
1, A ⊆ B,

0, otherwise,
B ∈ K,

is a totally monotone capacity [Den97, Proposition 1.2].

Let MX be a clan of continuous functions over a compact Hausdorff space X.
If β is a monotone capacity on K, then the Choquet integral of a function a ∈ MX

over X with respect to β is given by

(3.6)

∫
Ca dβ =

∫ 1

0

β(a−1([t, 1])) dt.

The Riemann integral on the right-hand side of (3.6) exists since the function

t ∈ [0, 1] �→ β(a−1([t, 1])) ∈ [0,∞)

is well-defined (that is, a−1([t, 1]) ∈ K) and non-increasing.

Example 3.4. In light of Example 3.3, observe that for every A ∈ K′ and every
a ∈ MX ,

(3.7)

∫
Ca dδA = ρa(A).

We introduce the following notations:
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M+(CK′) the set of all nonnegative measures on the MV-algebra CK′ ,
CAP∞ the set of all totally monotone capacities on K,
B(K) the Borel σ-algebra generated by the Hausdorff metric topology on K,
B(K′) the Borel σ-algebra generated by the Hausdorff metric topology on K′.

Theorem 3.5. Let MX be a separating clan of continuous functions over a com-
pact Hausdorff second-countable space X.

(i) There is an injective maping m ∈ M+(CK′) �→ βm ∈ CAP∞ satisfying

(3.8) m(ρa) =

∫
Ca dβm, for every a ∈ MX .

(ii) There is a mapping β ∈ CAP∞ �→ mβ ∈ M+(CK′) such that

(3.9)

∫
Ca dβ = mβ(ρa), for every a ∈ MX .

(iii) If m ∈ M+(CK′), then mβm
= m.

Proof. (i) Let m ∈ M+(CK′). Then Theorem 2.8 yields a unique nonnegative
regular Borel measure μm on B(K′) such that

m(f) =

∫
K′

f(A) dμm(A), f ∈ CK′ .

We may think of μm as a Borel measure on B(K) supported by a subset of K′. Put

(3.10) βm(A) = μm ({B ∈ K | B ⊆ A }) , A ∈ K.

The function βm is well-defined since the set

{B ∈ K | B ⊆ A }

is closed for every A ∈ K as a consequence of Proposition 3.1(iii). It can be routinely
checked that βm ∈ CAP∞. The mapping m �→ βm is injective: Theorem 2.8 says
that m → μm is a one-to-one correspondence and the mapping μm �→ βm given by
(3.10) is injective due to Proposition 3.1(iv). We will show that the equality (3.8)
holds true. For every a ∈ MX :

m(ρa) =

∫
K′

ρa(A) dμm(A) =

∫
K′

∫
C a dδA dμm(A)

=

∫
K′

∫ 1

0

δA(a
−1([t, 1])) dt dμm(A),

(3.11)

where the second equality follows from (3.7) and the third from the definition of
the Choquet integral. We will show that the function

b : K′ × [0, 1] → {0, 1}

defined by

b(A, t) = δA(a
−1([t, 1])), A ∈ K′, t ∈ [0, 1],

is measurable with respect to the product σ-algebra B(K′)×B([0, 1]). It is enough
to verify that the set

{ (A, t) ∈ K′ × [0, 1] | b(A, t) = 1 } =
{
(A, t) ∈ K′ × [0, 1]

∣∣ A ⊆ a−1([t, 1])
}
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belongs to B(K′) × B([0, 1]). Let G0 be a countable base for the topology of X.
Then it follows that{

(A, t) ∈ K′ × [0, 1]
∣∣ A ⊆ a−1([t, 1])

}
=

⋃
G∈G0

{
(A, t) ∈ K′ × [0, 1]

∣∣ G ∩A = ∅, G ⊇ a−1([0, t))
}

=
⋃

G∈G0

(
{A ∈ K′ | A ∩G = ∅ } ×

[
0, sup { a(x) | x ∈ G }

])
∈ B(K′)×B([0, 1]).

Hence b is measurable, so the Fubini theorem can be applied to the last integral in
(3.11). This gives

(3.12)

∫
K′

∫ 1

0

δA(a
−1([t, 1])) dt dμm(A) =

∫ 1

0

∫
K′

δA(a
−1([t, 1])) dμm(A) dt.

Observe that, for every t ∈ [0, 1],{
A ∈ K′ ∣∣ δA(a−1([t, 1])) = 1

}
=

{
A ∈ K′ ∣∣ A ⊆ a−1([t, 1])

}
.

Therefore the Riemann integral on the right-hand side of (3.12) becomes
(3.13)∫ 1

0

μm

({
A ∈ K′ ∣∣ A ⊆ a−1([t, 1])

})
dt =

∫ 1

0

βm(a−1([t, 1])) dt =

∫
Ca dβm,

where the first equality is a consequence of (3.10) and the second one follows from
the definition of the Choquet integral. This finishes the proof of (i).

(ii) Let β ∈ CAP∞. If β(X) = 0, then put mβ = 0 and observe that (3.9) is
satisfied. Otherwise define γ : K → [0,∞) as

γ =
β

β(X)
.

This implies γ ∈ CAP∞. In particular, γ takes on values in [0, 1] and γ(X) = 1.
A dual version of the Choquet theorem [Mol05, Theorem 1.13] yields a unique
regular Borel probability measure μγ on B(K) satisfying

μγ ({B ∈ K | B ⊆ A }) = γ(A), for every A ∈ K.

Note that μγ is necessarily supported by a subset of K′. Setting μβ = β(X)μγ , we
get

(3.14) μβ ({B ∈ K | B ⊆ A }) = β(A), for every A ∈ K.

Let

mβ(f) =

∫
K′

f(A) dμβ(A), for every f ∈ CK′ .

Proceeding in the same way as in (3.11)-(3.13), we come to

mβ(ρa) =

∫
Ca dβ, for every a ∈ MX .

This concludes the proof of (ii).
(iii) We must show that the Borel measures corresponding to m and mβm

via
Theorem 2.8, respectively, are identical. Due to Proposition 3.2(iv), we need only
to check that the two representing Borel measures agree on each set

{B ∈ K | B ⊆ A } , A ∈ K,
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since this is a set of generators for B(K). But this follows directly by combining
(3.10) with (3.14). �

The canonical example of a second-countable player set X in game theory
is the continuum of players [0, 1], which was previously used in [AS74, BK93].
On the one hand, the second-countability assumption is not needed to apply the
Choquet theorem in the proof above: its more general version proved recently in
[Ter10] relaxes this assumption. On the other hand, this assumption made it
possible to check the measurability of the function b in the proof of Theorem 3.5(i).
The transformation of the integral from (3.10) to (3.13) can be formulated in the
theory of random sets as a so-called Robbins’ theorem [Mol05].

Now we are going to extend our investigations to the whole set of bounded
measures on CK′ . Further notations:

M(CK′) the set of all bounded measures on the MV-algebra CK′ ,
CAP =

{
β1 − β2

∣∣ β1, β2 ∈ CAP∞
}
.

If α, β ∈ CAP∞, then it follows from the definition of the Choquet integral
(3.6) that

(3.15)

∫
Ca d(α+ β) =

∫
Ca dα+

∫
Ca dβ, a ∈ MX .

Let β ∈ CAP. Due to the (3.15), Choquet integral of a ∈ MX with respect to β
can be unambiguously defined as

(3.16)

∫
Ca dβ =

∫
Ca dβ1 −

∫
Ca dβ2,

where β = β1 − β2 for β1, β2 ∈ CAP∞. It is elementary to check that the bijection
established in Theorem 3.5 can be extended to M(CK′) and CAP by using (3.16)
together with Theorem 2.10. Hence we obtain the final result.

Theorem 3.6. Let MX be a separating clan of continuous functions over a com-
pact Hausdorff second-countable space X. Then there exists a one-to-one correspon-
dence m �→ βm between M(CK′) and CAP such that

(3.17) m(ρa) =

∫
Ca dβm, for every a ∈ MX .

Theorem 3.6 answers the question which games are of the form (3.4). So the
next definition makes sense.

Definition 3.7. Let MX be a separating clan of continuous functions over
a compact Hausdorff second-countable space X. Let β ∈ CAP, and v be a game
on MX such that

v(a) =

∫
Ca dβ, for every a ∈ MX .

The generalized Möbius transform of v is the unique mβ ∈ M(CK′) satisfying

(3.18) v(a) = mβ(ρa), for every a ∈ MX .

Thus a game v has a generalized Möbius transform if and only if it arises as
the Choquet integral with respect to a capacity from CAP. Some examples of such
games follow.
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Example 3.8. Let A ∈ K′ and

vA(a) = ρa(A), for every a ∈ MX .

The function δA defined by (3.5) belongs to CAP∞ and (3.7) implies

vA(a) =

∫
Ca dδA.

Let εA be the Dirac measure on B(K′) concentrated at the point A:

εA(A) =

{
1, A ∈ A,

0, A /∈ A,
for every A ∈ B(K′).

The generalized Möbius transform mδA of vA is the integral with respect to εA since

mδA(ρa) =

∫
K′

ρa(B) dεA(B) = ρa(A) = vA(a), for every a ∈ MX .

The previous example suggests a possible interpretation of the generalized
Möbius transform that will be further pursued in Section 4. Namely, the values
mδA(ρa) are “degrees of power” of coalitions a ∈ MX in the game vA. We can
think of A ∈ K′ as a group of “veto” players in the game vA since mδA(ρa) = 1 if
and only if a lies in the filter FA.

Example 3.9 (Totally monotone game). Let β ∈ CAP∞ and

v(a) =

∫
Ca dβ, for every a ∈ MX .

Then the generalized Möbius transform mβ of v is nonnegative. Because the opera-
tor ρ preserves infima (Proposition 3.2(i)) and v = mβ ◦ρ, Lemma 6 in [dCTM08]
yields that the game v is totally monotone on (the lattice reduct of) the MV-algebra
MX . This means that v is monotone and for each n ≥ 2 and every a1, . . . , an ∈ MX :

v

( n∨
i=1

ai

)
≥

∑
I⊆{1,...n}

I 	=∅

(−1)|I|+1v

(∧
i∈I

ai

)
.

Example 3.9 implies a particular necessary condition for the existence of the
generalized Möbius transform of a game v: the game v must be a difference of two
totally monotone functions on MX .

Example 3.10 (Measure). Every bounded measure m on MX is a game. The-
orem 2.10 says that, for every a ∈ MX ,

m(a) =

∫
X

a dμ,

where μ is a unique regular Borel measure on B(X). The restriction of μ to K

is clearly a capacity on K. This restriction is also denoted by μ. Moreover, the
Jordan decomposition of μ yields that the capacity μ belongs to CAP. Then the
Choquet integral of a ∈ MX with respect to μ coincides with the Lebesgue integral:

m(a) =

∫
Ca dμ, for every a ∈ MX .
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Hence the measure m has the generalized Möbius transform mμ. Since the capacity
μ is additive, the unique Borel probability measure μ on K representing mμ is
supported only by a subset of the set S = { {x} | x ∈ X } . Thus,

mμ(f) =

∫
S

f(A) dμ(A), for every f ∈ CK′ .

Examples of games without the generalized Möbius transform are found easily
even on the clan MX = [0, 1]X , where the player set X is finite.

Example 3.11. If X = {1, 2}, then the clan MX = [0, 1]X can be identified

with the unit square [0, 1]2. Since K′ =
{
{1}, {2}, X

}
, the clan CK′ = [0, 1]K

′
can

be viewed as the unit cube [0, 1]3. Let

v(a) = a21 + a22, for each a = (a1, a2) ∈ MX .

The game v does not have the generalized Möbius transform. Indeed, every m ∈ CK′

is just a linear mapping on [0, 1]3. Hence

m(ρa) = μ1a1 + μ2a2 + μ3 min{a1, a2}, a ∈ MX ,

for some μ1, μ2, μ3 ∈ R. In conclusion, the equality (3.18) cannot be satisfied.

4. Core, Enlarged Core and Cimmino-type Algorithm

Solving a game amounts to predicting a final profit distribution among the
players. It is usually assumed that all the coalitions in a game comply with the
basic criteria of economical rationality. The concept of a core solution is based on
two such premises:

(i) the coalition comprising all the players is formed and the players are able
to redistribute its profit,

(ii) no coalition will accept a smaller profit distribution than the one generated
by its own members.

Quoting Shapley [Sha53, p. 11], “the core is the set of feasible outcomes that
cannot be improved upon by any coalition of players”. These principles lead to the
following definition, which unifies the concept of core for games on various coalition
structures (cf. [Sha72, Aub74, AS74, BK93]).

Definition 4.1. Let v be a game on a semisimple MV-algebra M and M(M)
be the set of all bounded measures on M . The core of the game v is the set

C(v) = {m ∈ M(M) | m(1) = v(1), m(a) ≥ v(a), for every a ∈ M \ {1} } .

An empty core indicates that no coalitions are able to arrive at any agreement
about the joint distribution of profits. The question of non-emptiness of the core is
omnipresent in coalition game theory. This question is non-trivial even for games
on the clan 2X with the finite player set X: the core of any game on 2X is the in-
tersection of an affine hyperplane with 2|X|−2 half-spaces in R

|X|. If MX = [0, 1]X

with X finite, then a fortiori, checking non-emptiness is hard as the core is the
intersection of infinitely-many half-spaces and affine hyperplanes. Properties of the
core solution for games on [0, 1]X were, among others, studied by Aubin [Aub74]
and Azrieli and Lehrer [AL07]. In Section 4.2, we will apply the generalized Möbius
transform to checking nonemptiness of the core. In particular, the proposed pro-
cedure will always find at least one profit distribution provided the core is not
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empty. The procedure utilizes a bargaining power of coalitions introduced in the
next section.

4.1. Enlarged Core. We consider a negotiation scheme for a game v whose
aim is to reach a consensus. The consensus in the game is any distribution of profit
lying in the core C(v). We will confine our discussion to the finite player set X.
One can thus write X = {1, . . . , n} and identify the clan MX = [0, 1]X with the
n-cube [0, 1]n. Then every bounded measure on [0, 1]n is just a linear function on
[0, 1]n, which corresponds to a unique vector x ∈ R

n. Thus M(MX) = R
n. Let 〈., .〉

be the standard scalar product of vectors in R
n. Then we can express the core C(v)

of any game v on [0, 1]n as

C(v) = { x ∈ R
n | 〈1, x〉 = v(1), 〈a, x〉 ≥ v(a), for every a ∈ MX \ {1} } .

Put

Ca(v) =

{
{ x ∈ R

n | 〈1, x〉 = v(1) } , if a = 1,

{ x ∈ R
n | 〈a, x〉 ≥ v(a) } , if a ∈ M \ {1}.

Then we can write

C(v) =
⋂

a∈[0,1]n

Ca(v).

The concept of an enlarged core was proposed in [BK09] as a solution for
games on [0, 1]n. While the core of v is the set of common points of all the sets
Ca(v), the enlarged core of v will be defined as the set of points in R

n belonging
to all but “negligibly many” sets Ca(v). What “negligible” means depends on the
assessment of the bargaining power of coalitions a ∈ [0, 1]n in the given game.

Definition 4.2. A coalitional assessment of a game v on [0, 1]n is a complete
probability measure P defined on the σ-algebra A of the Lebesgue measurable
subsets of [0, 1]n.

For each A ∈ A, the number P (A) can be thought of as a relative degree
of influence of the coalitions in A ∈ A on the final distribution of profit in the
game v. If P (A) = 0, then the set A of coalitions has a negligible impact on the
bargaining about distributions of profit. Hence the conditions imposed by Ca(v)
can be disregarded for each a ∈ A when P (A) = 0. This naturally leads to the
following definition.

Definition 4.3. The enlarged core in the game v with a coalitional assess-
ment P is the set

CP (v) =
⋃
A∈A

P (A)=0

⋂
a∈[0,1]n\A

Ca(v).

It is clear that

(4.1) C(v) ⊆ CP (v).

It can happen that CP (v) is much larger than C(v) for a game v and a coalitional
assessment P [BK09, Example 3]. Interestingly enough, the existence of the non-
negative generalized Möbius transform of a game v yields a large class of coalitional
assessments for which the inclusion (4.1) can be strengthened to an identity.
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Theorem 4.4. Let β be a totally monotone capacity on 2X , where X = {1, . . . , n}.
If v is a game on [0, 1]n such that

(4.2) v(a) =

∫
Ca dβ, a ∈ [0, 1]n,

then the generalized Möbius transform mβ is nonnegative. Moreover, if the mea-
sure μβ corresponding to mβ satisfies μβ ({X}) > 0, then there is a coalitional
assessment P such that C(v) = CP (v).

Proof. As β is totally monotone, the generalized Möbius transform mβ of v
is indeed nonnegative (Example 3.9). Since mβ is nonnegative and nonzero, we
may suppose without loss of generality that∑

A∈2X\{∅}

μβ({A}) = 1.

The function μβ is nonnegative and sums to one over all the vertices of the n-
cube [0, 1]n except the origin. Hence it can be seen as a probability measure on
A supported by a subset of {0, 1}n. Assume that λ is any complete probability
measure on A such that λ(A) > 0 for every nonempty open set A ⊆ [0, 1]n. Case in
point: consider the Lebesgue measure on A. Let α ∈ (0, 1). Then the function

P = αλ+ (1− α)μβ

is a coalitional assessment on A satisfying P (A) > 0 whenever A ∈ A is open or
A contains the vector 1. The conclusion C(v) = CP (v) is then a consequence of
Theorem 1 in [BK93], which says that the existence of P with those properties is
sufficient for the equality in (4.1). �

The class of games v on [0, 1]n satisfying (4.2) is easily described. For each
a = (a1, . . . , an) ∈ [0, 1]n, let π be a permutation of {1, . . . , n} such that

aπ(1) ≤ · · · ≤ aπ(n).

Put aπ(0) = 0. Then

v(a) =

∫
Ca dβ =

n∑
i=1

(
aπ(i) − aπ(i−1)

)
β ({π(i), . . . π(n)}) .

4.2. Bargaining Schemes. The concepts of enlarged core and coalitional
assessment are, together with Theorem 4.4, main ingredients in introducing the so-
called bargaining schemes for games on [0, 1]n, which were proposed by Butnariu
and the author in [BK09].

Definition 4.5. A bargaining scheme for the core (or for the enlarged core) is
an iterative procedure that

(i) starts from an arbitrarily chosen initial distribution of profit x0 ∈ R
n

among the players,
(ii) generates a sequence (xk)k∈N in R

n converging to a point of the core or
the enlarged core, provided such a point exists.

In this context, each vector xk+1 is seen as a redistribution of wealth emerging
as the result of a bargaining process in which the terms of the distribution of
wealth xk are renegotiated at each step k according to specific rules. These rules
are determined by the Cimmino-style procedure [Cim38] generating the sequence
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(xk)k∈N. Finding an element of the core is thus interpreted as a convex feasibility
problem [BB96] in which the number of conditions is infinite. The algorithm,
which was originally developed in [BS08], is designed as follows.

We consider a game v on [0, 1]n meeting the assumptions of Theorem 4.4 and
a coalitional assessment P from the conclusion of the same theorem. This implies
that C(v) = CP (v). Let pa(x) be the metric projection of x ∈ R

n onto the set Ca(v),
which is given by

pa(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x, if a = 0,

x+ v(1)−〈1,x〉
n 1, if a = 1,

x+ max{0,v(a)−〈a,x〉}
n∑

i=1
a2
i

, otherwise.

The following vector integral p(x) is thus well-defined:

(4.3) p(x) =

∫
[0,1]n

pa(x) dP (a), x ∈ R
n.

Definition 4.6. The Cimmino-type bargaining scheme in the game v is the
following rule of generating sequences (xk)k∈N in R

n:

x0 ∈ R
n and xk+1 = p(xk), for every k = 0, 1, 2, . . . .

Starting from an arbitrary initial distribution of profit x0, every subsequent
vector xk+1 is computed according to (4.3) as the amalgamated projection with re-
spect to the coalitional assessment P . The question of convergence of this procedure
to a point in C(v) is discussed in [BK09] in detail. Define

g(x) = 1
2

∫
[0,1]n

‖pa(x)− x‖2 dP (a), x ∈ R
n.

Then the nonnegative function g is everywhere finite, convex, and continuously
differentiable with ∇g(x) = p(x)− x. The behavior of g with respect to a sequence
(xk)k∈N indicates the speed of convergence of the sequence (xk)k∈N to a point in
C(v). The two most important cases are singled out.

Theorem 4.7. Let x0 be any initial point and (xk)k∈N be the sequence generated
by the Cimmino-type bargaining scheme. Then:

(i) if the sequence (xk)k∈N is bounded, then the limit x∗ of (xk)k∈N exists and
x∗ ∈ C(v) provided g(x∗) = 0;

(ii) if the sequence (xk)k∈N is unbounded or the limit x∗ of (xk)k∈N exists with
g(x∗) > 0, then C(v) = ∅.

These two criteria thus enable us to determine nonemptiness of the core or to
find an element from the core. The examples of runs of this procedure together
with a discussion of emerging computational issues can be found in [BK09].

5. Open Problems

The existence of the generalized Möbius transform is proven only for a class
of games defined on a clan over a compact Hausdorff second-countable space (cf.
Theorem 3.5 and Theorem 3.6). The second-countability assumption was a key
component in the proof of Theorem 3.5, which enabled the representation of the
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Choquet integral by way of the Fubini theorem in (3.12). It is an interesting ques-
tion whether the second-countability assumption can be relaxed in the statement
of Theorem 3.5.

To the best of the author’s knowledge, the application of the Möbius trans-
form to Cimmino-style projection techniques has not previously appeared in the
literature. In Section 4, we investigated such an application for games with finitely
many players. The restriction to clans over a finite set was necessary to utilize the
result from [BK09] that the core and the enlarged core coincide for specific coali-
tional assessments in games with finitely many players (see the proof of Theorem
4.4). It is therefore an open problem whether or not the presented approach to the
Cimmino-style bargaining scheme can also be carried over to games with infinitely
many players.
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